

W/Z+jets and W/Z+HF Production at the Tevatron

Oriol Saltó Bauzà

号 - Barcelona

for the CDF and DØ Collaborations

Tevatron

June 27th, 2008 Oriol Saltó - IFAE 2

CDF and DØ

Both experiments recording data with high **efficiency** (80-90%) and making full use of their capabilities.

Introduction

Stringent test of **pQCD** predictions.

The mass of the boson provides the necessary hard scale to perform pQCD calculations.

NLO pQCD predictions available for Boson + up to 2 jets. Also sensitive to any new physics decays to Boson+jets.

Test Ground for techniques matching Matrix Elements and Parton Shower (ME+PS).

Special matching algorithms (MLM, CKKW) are used to avoid double counting on ME+PS interface.

The comparison of measured cross sections (hadron level) with fixed-order pQCD predictions requires a good modeling of the **Underlying Event** (interaction between the proton remnants) and the **fragmentation** of the partons into hadrons.

Introduction

Boson+jets constitute irreducible backgrounds for interesting SM processes (top production) and searches for new physics (SUSY and Higgs searches)

Outline

- Boson + Inclusive Jet Cross Section
 - W(→ev) + jets
 - Comparison to NLO pQCD and ME+PS
 - $Z/\gamma^*(\rightarrow e^+e^-)$ + jets
 - Comparison to NLO pQCD
 - Comparison to ME+PS
- Boson + Heavy Flavor Jets
 - Secondary Vertex Tagging
 - **Z** + **b** Jets
 - W + b Jets
 - Soft Lepton Tagging
 - W + Single c Jet

"Particles, particles, particles."

W+jets

Measurement of the $W(\rightarrow ev)$ +jets cross section at hadron level for jets with:

- E_T > 15 GeV and |η| < 2
 and W decay products:
 - $E_T^e > 20 \text{ GeV}$, $|\eta^e| < 1.1$, $E_T^v > 30 \text{ GeV}$ and $M_T^W > 20 \text{ GeV/c}^2$.

Comparisons to NLO pQCD and ME+PS predictions.

+ parton shower

+ parton shower

0.32 fb⁻¹

W+jets

Comparisons to:

- NLO pQCD by MCFM corrected for non-perturbative contributions
- ME+PS:
 - Alpgen+Herwig with MLM matching
 - Madgraph+Pythia with CKKW matching by SMPR

Predictions are a convolution of several effects (order of pQCD calculation, modeling of the UE, etc.) but in general:

- Good agreement with NLO pQCD predictions
- Underestimation of the LO ME+PS

Phys. Rev. D 77, 011108(R) (2008)

Z/γ^* +jets

Inclusive jet cross sections in

 $Z/\gamma^*(\rightarrow e^+e^-)$ production.

- Measured the inclusive hadron level jet cross section in a restricted kinematic region.
- Compared to NLO pQCD predictions.
- Fixed-order pQCD prediction have been corrected for non-perturbative contributions (UE and fragmentation).

Kinematic region:

- E_T^e > 25 GeV, $|\eta^{e1}|$ < 1.0, $|\eta^{e2}|$ < 1.0 OR 1.2 < $|\eta^{e1}|$ < 2.8
- $66 < M_{\rm ee} < 116 \; {\rm GeV/c^2}$
- $p_T^{jet} > 30 \text{ GeV/c}, |y^{jet}| < 2.1$

Very good agreement Data-NLO

Z/γ^* +jets

NLO pQCD describe the data **accurately** in all p_T^{jet} range.

- NLO predictions available up to 2 jets in the final state
- Uncertainties in data and NLO are comparable at low p_T^{jet} (~10%).
- Uncertainties in the theoretical prediction are dominates by the dependence on the scale: 10% (15%) in Z/γ* + ≥1 jet (≥2 jets).

Z/γ^* +jets

LO pQCD underestimates the cross section by a factor 1.4

Data suggest a constant **NLO/LO** *k*-factor for up to 3 jets in the final state.

Both, LO and NLO, predictions include a ~15% contribution from non-pQCD effects.

Very good agreement Data-NLO pQCD.

 χ^2 probability of 83% (99%) for $N_{\text{jets}} \ge 1$ ($N_{\text{jets}} \ge 2$).

Z/γ^* +jets in different MC

0.95 fb⁻¹

Comparing the prediction of Z+jets done by different MCs: $(p_T^{jet} > 15 \text{ GeV/c})$

Pythia Z inclusive

Jets are created from the PS It describes up to the 2nd jet

Sherpa Z+0...3p

ME+PS matched for every parton/jet mutiplicity Describes better higher jet multiplicities.

Boson + Heavy Flavor Jets

There is special interest in **Boson+HF jets** processes.

They are background to some of the most interesting processes.

Light Higgs prefers to decay in bb

Background to top production

Heavy Flavor Jets (SecVtx)

Secondary Vertex algorithm (SecVtx) reconstructs secondary vertices inside jets. Cutting on the distance between the primary and secondary vertices rejects most of light flavor jets.

The **mass of the secondary vertex** is a powerful discriminant to extract the *b*-jet content. Templates from MC are fitted to the data.

Secondary

vertex

Jet cone

Z+b Jets

The measurement counts jets with a secondary vertex,

 $p_T > 20$ GeV/c and $|\eta| < 1.5$ in $Z/\gamma^* \rightarrow \mu\mu$ and $Z/\gamma^* \rightarrow ee$ events.

The measurement is unfolded to the hadron level.

Updates the previous results with 6 times more data and includes differential distributions.

2.0 fb⁻¹

Fraction of *b*-jets obtained by fitting the invariant mass of the tracks of the secondary vertex with the templates of the light, *c* and *b* jet contributions.

Z+b Jets

	CDF Data	PYTHIA	ALPGEN	HERWIG	NLO	NLO
						+U.E $+$ hadr.
$\sigma(Z + b \text{ jet})$	$0.86 \pm 0.14 \pm 0.12 \text{ pb}$	_	_	_	0.51 pb	0.53 pb
$\sigma(Z + b \text{ jet})/\sigma(Z)$	$0.336 \pm 0.053 \pm 0.041\%$	0.35%	0.21%	0.21%	0.21%	0.23%
$\sigma(Z + b \text{ jet})/\sigma(Z + \text{ jet})$	$2.11 \pm 0.33 \pm 0.34\%$	2.18%	1.45%	1.24%	1.88%	1.77%

Data are well described by Pythia but is slightly underestimated by the NLO prediction.

Underlying Event and hadronization contributions obtained from Pythia (+10% and -1%)

W+b Jets

Provides a data-driven measurement of background to **single** top and **Higgs** searches.

$$\sigma_{b \text{ jets}}(W + b \text{ jets}) \times BR(W \rightarrow \ell \nu) = 2.74 \pm 0.27(stat) \pm 0.42(syst)pb$$

in events with a $p_T > 20$ GeV/c, $|\eta| < 1.1$ electron or muon, a $p_T > 25$ GeV/c neutrino, and 1 or 2 $E_T > 20$ GeV, $|\eta| < 2.0$ jets regardless of species.

ALPGEN prediction: $\sigma \times BR = 0.78 \, pb$

Clear underestimation by LO prediction.

Heavy Flavor Jets (SLT)

Heavy Flavor jets can be identified by the presence of a low p_T lepton (soft lepton (electron or muon)) inside the jet coming from the semi-leptonic decay of a heavy quark.

In the μ case, a jet is tagged if the μ p_T>3GeV/c and it goes in the direction of the jet, and passes some track quality cuts.

W + Single c Jet

First direct measurements of this cross section.

Probes the **gluon** and **s-quark** PDF in the proton.

For *W+c*, the soft muon in the SLT jet and the lepton from the W must have opposite sign.

Observable: Nos-Nss

- Used to distinguish the signal from W+cc and W+bb, where N^{OS}-N^{SS} ≈ 0
- Definition of Asymmetry:

$$A = \frac{N^{OS} - N^{SS}}{N^{OS} + N^{SS}}$$

c-jets identified by the presence of a **soft muon** inside the jet from the semi-leptonic decay of the *c* quark (**SLT**_u jet)

Events selected by the presence of a **SLT jet**, in addition to a charged **lepton** and **MET** from the W decay.

W + Single c Jet

1.8 fb⁻¹

$$(N^{OS} - N^{SS})_{measured} = 298$$

W+c contribution scaled to the number of (OS-SS) observed

Cross section for $p_T(c) > 20$ GeV/c and $|\eta(c)| < 1.5$

$$\sigma_{wc} = \frac{N_{tot}^{OS-SS} - N_{bkg}^{OS-SS}}{A \cdot Acc \cdot \int L}$$
Asymmetry

$$\sigma_{Wc} \times BR(W \to \ell \nu) = 9.8 \pm 2.8(stat) + 1.4 + 1.6(syst) \pm 0.6(lum) pb$$

in agreement with the NLO pQCD prediction: $11.0 {}^{+1.4}_{-3.0} pb$

W + Single c Jet

Also using the **charge correlation** in $W(\rightarrow \ell v) + c$ events

$$\frac{\sigma(W+c-jet)}{\sigma(W+jets)} = 0.071 \pm 0.017$$

Alpgen+Pythia prediction
$$\frac{\sigma(W+c-jet)}{\sigma(W+jets)} = 0.040 \pm 0.003 (PDF)$$

Measurement dominated by statistical uncertainties.

Reasonable agreement with Alpgen+Pythia prediction.

Summary

 Boson + jets measurement play a critical role in the Tevatron Run II physics program.

- Predictions on Boson + inclusive jets have been intensively studied.
 - NLO pQCD predictions describe accurately the measurements on data.
- Description of Boson + HF jets is an open business.
 - The new results suggest discrepancies between data and NLO pQCD calculations.
 - Further studies promise to bring some light to the subject
- The understanding of Boson + jets final states will be crucial at the LHC.

